Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Med ; 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38663402

RESUMO

BACKGROUND: Ischemic stroke is a major cause of worldwide death and disability, with recombinant tissue plasminogen activator being the sole effective treatment, albeit with a limited treatment window. The cyclic GMP-AMP synthase (cGAS) and stimulator of interferon genes (STING) pathway is emerging as the major DNA-sensing pathway to invoke immune responses in neuroinflammatory disorders. METHODS: By performing a series of neurobehavioral assessments, electrophysiological analysis, high-throughput sequencing, and cell-based assays based on the transient middle cerebral artery occlusion (tMCAO) mouse stroke model, we examined the effects and underlying mechanisms of genetic and pharmacological inhibition of the cGAS-STING pathway on long-term post-stroke neurological functional outcomes. FINDINGS: Blocking the cGAS-STING pathway, even 3 days after tMCAO, significantly promoted functional recovery in terms of white matter structural and functional integrity as well as sensorimotor and cognitive functions. Mechanistically, the neuroprotective effects via inhibiting the cGAS-STING pathway were contributed not only by inflammation repression at the early stage of tMCAO but also by modifying the cell state of phagocytes to facilitate remyelination at the sub-acute phase. The activation of the cGAS-STING pathway significantly impeded post-stroke remyelination through restraining myelin debris uptake and degradation and hindering oligodendrocyte differentiation and maturation. CONCLUSIONS: Manipulating the cGAS-STING pathway has an extended treatment window in promoting long-term post-stroke functional recovery via facilitating remyelination in a mouse stroke model. Our results highlight the roles of the cGAS-STING pathway in aggregating stroke pathology and propose a new way for improving functional recovery after ischemic stroke. FUNDING: This work was primarily funded by the National Key R&D Program of China.

2.
Front Microbiol ; 14: 1244026, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37601351

RESUMO

Diarrhea caused by enterotoxigenic Escherichia coli (ETEC) infections poses a significant challenge in global pig farming. To address this issue, the study was conducted to identify and characterize 19 ETEC isolates from fecal samples of diarrheic pigs sourced from large-scale farms in Sichuan Province, China. Whole-genome sequencing and bioinformatic analysis were utilized for identification and characterization. The isolates exhibited substantial resistance to cefotaxime, ceftriaxone, chloramphenicol, ciprofloxacin, gentamicin, ampicillin, tetracycline, florfenicol, and sulfadiazine, but were highly susceptible to amikacin, imipenem, and cefoxitin. Genetic diversity among the isolates was observed, with serotypes O22:H10, O163orOX21:H4, and O105:H8 being dominant. Further analysis revealed 53 resistance genes and 13 categories of 195 virulence factors. Of concern was the presence of tet(X4) in some isolates, indicating potential public health risks. The ETEC isolates demonstrated the ability to produce either heat-stable enterotoxin (ST) alone or both heat-labile enterotoxin (LT) and ST simultaneously, involving various virulence genes. Notably, STa were linked to human disease. Additionally, the presence of 4 hybrid ETEC/STEC isolates harboring Shiga-like toxin-related virulence factors, namely stx2a, stx2b, and stx2e-ONT-2771, was identified. IncF plasmids carrying multiple antimicrobial resistance genes were prevalent, and a hybrid ETEC/STEC plasmid was detected, highlighting the role of plasmids in hybrid pathotype emergence. These findings emphasized the multidrug resistance and pathogenicity of porcine-origin ETEC strains and the potential risk of epidemics through horizontal transmission of drug resistance, which is crucial for effective control strategies and interventions to mitigate the impact on animal and human health.

3.
Comput Struct Biotechnol J ; 20: 6490-6500, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36448027

RESUMO

The cGAS-STING pathway, orchestrating complicated transcriptome-wide immune responses, is essential for host antiviral defense but can also drive immunopathology in severe COVID-19. Here, we performed time-course RNA-Seq experiments to dissect the transcriptome expression dynamics at the gene-isoform level after cGAS-STING pathway activation. The in-depth time-course transcriptome after cGAS-STING pathway activation within 12 h enabled quantification of 48,685 gene isoforms. By employing regression models, we obtained 13,232 gene isoforms with expression patterns significantly associated with the process of cGAS-STING pathway activation, which were named activation-associated isoforms. The combination of hierarchical and k-means clustering algorithms revealed four major expression patterns of activation-associated isoforms, including two clusters with increased expression patterns enriched in cell cycle, autophagy, antiviral innate-immune functions, and COVID-19 coronavirus disease pathway, and two clusters showing decreased expression pattern that mainly involved in ncRNA metabolism, translation process, and mRNA processing. Importantly, by merging four clusters of activation-associated isoforms, we identified three types of genes that underwent isoform usage alteration during the cGAS-STING pathway activation. We further found that genes exhibiting protein-coding and non-protein-coding gene isoform usage alteration were strongly enriched for the factors involved in innate immunity and RNA splicing. Notably, overexpression of an enriched splicing factor, EFTUD2, shifted transcriptome towards the cGAS-STING pathway activated status and promoted protein-coding isoform abundance of several key regulators of the cGAS-STING pathway. Taken together, our results revealed the isoform-level gene expression dynamics of the cGAS-STING pathway and uncovered novel roles of splicing factors in regulating cGAS-STING pathway mediated immune responses.

4.
Comput Struct Biotechnol J ; 20: 1785-1797, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35495108

RESUMO

The cGAS-STING signaling plays pivotal roles not only in host antiviral defense but also in various noninfectious contexts. Compared with protein-coding genes, much less was known about long noncoding RNAs involved in this pathway. Here, we performed an integrative study to elucidate the lncRNA repertoire and the mechanisms modulating lncRNA's expression following cGAS-STING signaling activation. We uncovered a reliable set of 672 lncRNAs closely linked to cGAS-STING signaling activation (cs-lncRNA), which might be associated with type-I interferon response and infection-related phenotypes. The ChIP-seq analysis demonstrated that cs-lncRNA was strongly regulated at the transcriptional level. We further found N6-methyladenosine (m6A) regulatory machinery was indispensable for establishing cs-lncRNA repertoire via modulating m6A modification on cs-lncRNA transcripts and promoting the expression of signaling transduction key components, including IFNAR1. Loss of IFNAR1 led to the dysregulation of cs-lncRNAs resembled that of loss of an essential subunit of m6A writer METTL14. We also found m6A system affected transcriptional machinery to modulate cs-lncRNAs by targeting multiple crucial transcription factors. Inhibiting an m6A modification regulated transcription factor, EZH2, markedly enhanced the expression pattern of cs-lncRNAs. Taken together, our results uncovered the composition of the cs-lncRNAs and revealed m6A-mediated modulation coupled with transcriptional regulation significantly shaped cs-lncRNA repertoire.

5.
Int J Biol Macromol ; 169: 216-227, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33340629

RESUMO

Opisina arenosella is one of the main pests harming coconut trees. To date, there have been few studies on the molecular genetics, biochemistry and physiology of O. arenosella at the transcriptional level, and there are no available reference genomes. Here, Illumina RNA sequencing combined with PacBio single-molecule real-time analysis was applied to study the transcriptome of this pest at different developmental stages, providing reference data for transcript expression analysis. Twelve samples of O. arenosella from different stages of development were sequenced using Illumina RNA sequencing, and the pooled RNA samples were sequenced with PacBio technology (Iso-Seq). A full-length transcriptome with 41,938 transcripts was captured, and the N50 and N90 lengths were 3543 bp and 1646 bp, respectively. A total of 36,925 transcripts were annotated in public databases, 6493 of which were long noncoding RNAs, while 2510 represented alternative splicing events. There were significant differences in the gene expression profiles at different developmental stages, with high levels of differential gene expression associated with growth, development, carbohydrate metabolism and immunity. This work provides resources and information for the study of the transcriptome and gene function of O. arenosella and provides a valuable foundation for understanding the changes in gene expression during development.


Assuntos
Mariposas/genética , Análise de Sequência de RNA/métodos , Transcriptoma/genética , Animais , Expressão Gênica/genética , Perfilação da Expressão Gênica/métodos , Lepidópteros/genética , Anotação de Sequência Molecular/métodos , RNA/genética , RNA Longo não Codificante/genética , RNA-Seq/métodos , Imagem Individual de Molécula/métodos
6.
PeerJ ; 8: e10223, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33194414

RESUMO

BACKGROUND: Red palm weevil, Rhynchophorus ferrugineus Olivier, is one of the most destructive pests harming palm trees. However, genomic resources for R. ferrugineus are still lacking, limiting the ability to discover molecular and genetic means of pest control. METHODS: In this study, PacBio Iso-Seq and Illumina RNA-seq were used to generate transcriptome from three developmental stages of R. ferrugineus (pupa, 7th-instar larva, adult) to increase the understanding of the life cycle and molecular characteristics of the pest. RESULTS: Sequencing generated 625,983,256 clean reads, from which 63,801 full-length transcripts were assembled with N50 of 3,547 bp. Expression analyses revealed 8,583 differentially expressed genes (DEGs). Moreover, gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis revealed that these DEGs were mainly related to the peroxisome pathway which associated with metabolic pathways, material transportation and organ tissue formation. In summary, this work provides a valuable basis for further research on the growth and development, gene expression and gene prediction, and pest control of R. ferrugineus.

7.
PeerJ ; 8: e9133, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32509454

RESUMO

BACKGROUND: Red palm weevil Rhynchophorus ferrugineus (Coleoptera: Curculionidae) is one of the most destructive insects for palm trees in the world. However, its genome resources are still in the blank stage, which limits the study of molecular and growth development analysis. METHODS: In this study, we used PacBio Iso-Seq and Illumina RNA-seq to first generate transcriptome from three developmental stages of R. ferrugineus (pupa, 7th larva, female and male) to increase our understanding of the life cycle and molecular characteristics of R. ferrugineus. RESULTS: A total of 63,801 nonredundant full-length transcripts were generated with an average length of 2,964 bp from three developmental stages, including the 7th instar larva, pupa, female adult and male adult. These transcripts showed a high annotation rate in seven public databases, with 54,999 (86.20%) successfully annotated. Meanwhile, 2,184 alternative splicing (AS) events, 2,084 transcription factors (TFs), 66,230 simple sequence repeats (SSR) and 9,618 Long noncoding RNAs (lncRNAs) were identified. In summary, our results provide a new source of full-length transcriptional data and information for the further study of gene expression and genetics in R. ferrugineus.

8.
Environ Model Softw ; 74: 247-257, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26644779

RESUMO

Satellite remote sensing produces an abundance of environmental data that can be used in the study of human health. To support the development of early warning systems for mosquito-borne diseases, we developed an open-source, client based software application to enable the Epidemiological Applications of Spatial Technologies (EASTWeb). Two major design decisions were full automation of the discovery, retrieval and processing of remote sensing data from multiple sources, and making the system easily modifiable in response to changes in data availability and user needs. Key innovations that helped to achieve these goals were the implementation of a software framework for data downloading and the design of a scheduler that tracks the complex dependencies among multiple data processing tasks and makes the system resilient to external errors. EASTWeb has been successfully applied to support forecasting of West Nile virus outbreaks in the United States and malaria epidemics in the Ethiopian highlands.

9.
PLoS One ; 8(9): e72571, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24019872

RESUMO

The SGT1 protein is essential for R protein-mediated and PAMPs-triggered resistance in many plant species. Here we reported the isolation and characterization of the Hv-SGT1 gene from Haynaldiavillosa (2n = 14, VV). Analysis of the subcellular location of Hv-SGT1 by transient expression of a fusion to GFP indicated its presence in the cytoplasm and nucleus. Levels of Hv-SGT1 transcripts were increased by inoculation with either the biotrophic pathogen Blumeriagraminis DC. f. Sp. tritici (Bgt) or the hemi-biotrophic pathogen Fusariumgraminearum (Fg). Levels of Hv-SGT1 showed substantial increase following treatment with H2O2 and methyl jasmonate (MeJA), only slightly induced following exposure to ethephon or abscisic acid, but not changed following exposure to salicylic acid. The demonstration that silencing of Hv-SGT1 substantially reduced resistance to Bgt indicated that Hv-SGT1 was an essential component of disease resistance in H. villosa. The over-expression of Hv-SGT1 in Yangmai 158 enhanced resistance to powdery mildew, and this correlated with increased levels of whole-cell reactive oxygen intermediates at the sites of penetration by the pathogens. Compared with wild-type plants, the expression levels of genes related to the H2O2 and JA signaling pathways were lower in the Hv-SGT1 silenced plants and higher in the Hv-SGT1 over-expressing plants. Therefore, the involvement of Hv-SGT1 in H2O2 production correlates with the hypersensitive response and jasmonic acid signaling. Our novel demonstration that wheat with over-expressed Hv-SGT1 showed enhanced resistance to both powdery mildew and FHB suggests that it could served as a transgenic genetic resource in wheat breeding for multiple disease resistance.


Assuntos
Genes de Plantas , Glucosiltransferases/genética , Interações Hospedeiro-Patógeno , Poaceae/genética , Triticum/microbiologia , Sequência de Aminoácidos , Inativação Gênica , Glucosiltransferases/química , Dados de Sequência Molecular , Filogenia , Homologia de Sequência de Aminoácidos
10.
Int J Environ Res Public Health ; 8(1): 264-80, 2011 01.
Artigo em Inglês | MEDLINE | ID: mdl-21318028

RESUMO

Aquatic ecological carrying capacity is an effective method for analyzing sustainable development in regional water management. In this paper, an integrated approach is employed for assessing the aquatic ecological carrying capacity of Wujin District in the Tai Lake Basin, China. An indicator system is established considering social and economic development as well as ecological resilience perspectives. While calculating the ecological index, the normalized difference vegetation index (NDVI) is extracted from Moderate Resolution Imaging Spectroradiometer (MODIS) time-series images, followed by spatial and temporal analysis of vegetation cover. Finally, multi-index assessment of aquatic ecological carrying capacity is carried out for the period 2000 to 2008, including both static and dynamic variables. The results reveal that aquatic ecological carrying capacity presents a slight upward trend in the past decade and the intensity of human activities still exceeded the aquatic ecological carrying capacity in 2008. In terms of human activities, population has decreased, GDP has quadrupled, and fertilizer application and industrial wastewater discharge have declined greatly in the past decade. The indicators representing aquatic ecosystem conditions have the lowest scores, which are primarily attributed to the water eutrophication problem. Yet the terrestrial ecosystem is assessed to be in better condition since topographic backgrounds and landscape diversity are at higher levels. Based on the work carried out, it is suggested that pollutant emission be controlled to improve water quality and agricultural development around Ge Lake (the largest lake in Wujin District) be reduced.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Monitoramento Ambiental/métodos , Água Doce , Agricultura , Biodiversidade , Análise da Demanda Biológica de Oxigênio , China , Sistemas de Informação Geográfica , Indústrias , Nitrogênio/análise , Fósforo/análise , Densidade Demográfica , Comunicações Via Satélite , Poluição Química da Água/análise , Abastecimento de Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...